2,084 research outputs found

    Stellar Scattering and the Formation of Hot-Jupiters in Binary Systems

    Full text link
    Hot Jupiters (HJs) are usually defined as giant Jovian-size planets with orbital periods P≤10P \le 10 days. Although they lie close to the star, several have finite eccentricities and significant misalignment angle with respect to the stellar equator. Two mechanisms have been proposed to explain the excited and misaligned sub-population of HJs: Lidov-Kozai migration and planet-planet scattering. Although both are based on completely different dynamical phenomena, they appear to be equally effective in generating hot planets. Nevertheless, there has been no detailed analysis comparing the predictions of both mechanisms. In this paper we present numerical simulations of Lidov-Kozai trapping of single planets in compact binary systems. Both the planet and the binary are initially placed in coplanar orbits, although the inclination of the impactor is assumed random. After the passage of the third star, we follow the orbital and spin evolution of the planet using analytical models based on the octupole expansion of the secular Hamiltonian. The present work aims at the comparison of the two mechanisms, as an explanation for the excited and inclined HJs in binary systems. We compare the results obtained through this paper with results in Beaug\'e & Nesvorn\'y 2012, where the authors analyze how the planet-planet scattering mechanisms works. Several of the orbital characteristics of the simulated HJs are caused by tidal trapping from quasi-parabolic orbits, independent of the driving mechanism. These include both the 3-day pile-up and the distribution in the eccentricity vs semimajor axis plane. However, the distribution of the inclinations shows significant differences. While Lidov-Kozai trapping favors a more random distribution, planet-planet scattering shows a large portion of bodies nearly aligned with the equator of the central star.Comment: 12 pages, 6 figures. Accepted for publication at IJAB (internation journal of astrobiology

    Chaotic Diffusion in the Gliese-876 Planetary System

    Get PDF
    Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disk, and a natural consequence of irregular motion. In this paper we show that resonant multi-planetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over timescales comparable to their age.Using the GJ-876 system as an example, we analyze the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincar\'e maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behavior of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.Comment: 13 pages, 7 figures, 2 tables. Accepted for publication in MNRA

    La vegetación de zonas erosionadas en la depresión media del Ebro y en el Prepirineo: influencia de factores climáticos, topográficos y geomorfológicos en la composición florística de las comunidades vegetales

    Get PDF
    [Resumen] Se han analizado 732 inventarios de vegetación en zonas sometidas a procesos erosivo-sedimentarios de un área del NE de la Península Ibérica, muy diversa climática y litológicamente (yesos, arcillas, margas y flysch). El objetivo del estudio es determinar cómo afectan dichos procesos a la composición florística de las comunidades vegetales de los diferentes sustratos. El tipo de sustrato ejerció una gran influencia sobre los procesos estudiados, siendo la cobertura de las fanerógamas el parámetro que mejor se asoció con el grado de erosión. En las zonas más secas con bajas tasas de erosión (yesos), las características topográficas controlaron la distribución de las comunidades vegetales, mientras que en las zonas más húmedas, sometidas a procesos erosivos más dinámicos (margas), la composición florística fué más homogénea y menos dependiente de la topografía y del grado de erosión. Los procesos erosivosedimentarios explicaron mejor la composición florística cuanto menor era la escala espacial de análisis.[Abstract] We have analysed 732 releves of plant communities taken from eroded lands in the NE Iberian Peninsula. This diverse area has very different climates and substrata: gypsum, clays, marls and flysch. The aim of the study was to explore how erosion and sedimentation processes affect floristic composition of plant communities in such different substrata. Substratum had a high influence on the studied processes, the cover of fanerogams being the best correlated parameter with erosion grade. In the driest lands, with low erosion rates (gypsum), plant community distribution was mostly affected by topography, but in the wettest areas, with strong and more dynamic erosional processes (marls), the floristic composition was more homogeneus and depended less on the topography and the erosion grade. The erosionsedimentation processes better explained the floristic composition when the scale of analysis was reduced

    Optical spectroscopy and X-ray observations of the D-type symbiotic star EF Aql

    Full text link
    We performed high-resolution optical spectroscopy and X-ray observations of the recently identified Mira-type symbiotic star EF Aql. Based on high-resolution optical spectroscopy obtained with SALT, we determine the temperature (∼\sim 55 000 K) and the luminosity (∼\sim 5.3 L⊙L_\odot) of the hot component in the system. The heliocentric radial velocities of the emission lines in the spectra reveal possible stratification of the chemical elements. We also estimate the mass-loss rate of the Mira donor star. Our Swift observation did not detect EF Aql in X-rays. The upper limit of the X-ray observations is 10−12^{-12} erg cm−2^{-2} s−1^{-1}, which means that EF Aql is consistent with the faintest X-ray systems detected so far. Otherwise we detected it with the UVOT instrument with an average UVM2 magnitude of 14.05. During the exposure, EF Aql became approximately 0.2 UVM2 magnitudes fainter. The periodogram analysis of the V-band data reveals an improved period of 320.4±\pm0.3 d caused by the pulsations of the Mira-type donor star. The spectra are available upon request from the authors.Comment: Accepted for publication in MNRA

    Experimental demonstration of a graph state quantum error-correction code

    Full text link
    Scalable quantum computing and communication requires the protection of quantum information from the detrimental effects of decoherence and noise. Previous work tackling this problem has relied on the original circuit model for quantum computing. However, recently a family of entangled resources known as graph states has emerged as a versatile alternative for protecting quantum information. Depending on the graph's structure, errors can be detected and corrected in an efficient way using measurement-based techniques. In this article we report an experimental demonstration of error correction using a graph state code. We have used an all-optical setup to encode quantum information into photons representing a four-qubit graph state. We are able to reliably detect errors and correct against qubit loss. The graph we have realized is setup independent, thus it could be employed in other physical settings. Our results show that graph state codes are a promising approach for achieving scalable quantum information processing

    Growth of graph states in quantum networks

    Full text link
    We propose a scheme to distribute graph states over quantum networks in the presence of noise in the channels and in the operations. The protocol can be implemented efficiently for large graph sates of arbitrary (complex) topology. We benchmark our scheme with two protocols where each connected component is prepared in a node belonging to the component and subsequently distributed via quantum repeaters to the remaining connected nodes. We show that the fidelity of the generated graphs can be written as the partition function of a classical Ising-type Hamiltonian. We give exact expressions of the fidelity of the linear cluster and results for its decay rate in random graphs with arbitrary (uncorrelated) degree distributions.Comment: 16 pages, 7 figure

    Relativistic Jets from Collapsars

    Get PDF
    We have studied the relativistic beamed outflow proposed to occur in the collapsar model of gamma-ray bursts. A jet forms as a consequence of an assumed energy deposition of ∼1050−1051\sim 10^{50}- 10^{51} erg/s within a 30∘30^{\circ} cone around the rotation axis of the progenitor star. The generated jet flow is strongly beamed (\la few degrees) and reaches the surface of the stellar progenitor (r ≈31010\approx 3 10^{10} cm) intact. At break-out the maximum Lorentz factor of the jet flow is about 33. Simulations have been performed with the GENESIS multi-dimensional relativistic hydrodynamic code.Comment: 6 pages, 2 figures, to appear in the proceedings of the conference "Godunov methods: theory and applications", Oxford, October 199

    New Relativistic Effects in the Dynamics of Nonlinear Hydrodynamical Waves

    Full text link
    In Newtonian and relativistic hydrodynamics the Riemann problem consists of calculating the evolution of a fluid which is initially characterized by two states having different values of uniform rest-mass density, pressure and velocity. When the fluid is allowed to relax, one of three possible wave-patterns is produced, corresponding to the propagation in opposite directions of two nonlinear hydrodynamical waves. New effects emerge in a special relativistic Riemann problem when velocities tangential to the initial discontinuity surface are present. We show that a smooth transition from one wave-pattern to another can be produced by varying the initial tangential velocities while otherwise maintaining the initial states unmodified. These special relativistic effects are produced by the coupling through the relativistic Lorentz factors and do not have a Newtonian counterpart.Comment: 4 pages, 5 figure

    Matroids and Quantum Secret Sharing Schemes

    Full text link
    A secret sharing scheme is a cryptographic protocol to distribute a secret state in an encoded form among a group of players such that only authorized subsets of the players can reconstruct the secret. Classically, efficient secret sharing schemes have been shown to be induced by matroids. Furthermore, access structures of such schemes can be characterized by an excluded minor relation. No such relations are known for quantum secret sharing schemes. In this paper we take the first steps toward a matroidal characterization of quantum secret sharing schemes. In addition to providing a new perspective on quantum secret sharing schemes, this characterization has important benefits. While previous work has shown how to construct quantum secret sharing schemes for general access structures, these schemes are not claimed to be efficient. In this context the present results prove to be useful; they enable us to construct efficient quantum secret sharing schemes for many general access structures. More precisely, we show that an identically self-dual matroid that is representable over a finite field induces a pure state quantum secret sharing scheme with information rate one
    • …
    corecore